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We answer the questions raised by Donev, Torquato, Stillinger, and Connelly(DTSC) in their preceding
Comment on “Jamming at zero temperature and zero applied stress: The epitome of disorder”[Phys. Rev. E
70, 043301(2004)] We emphasize that we follow a fundamentally different approach than they have done to
reinterpret random close packing in terms of the “maximally random jammed” framework. We define the
“maximally random jammed packing fraction” to be where the largest number of initial states, chosen com-
pletely randomly, have relaxed final states at the jamming threshold in the thermodynamic limit. Thus, we
focus on an ensemble of states at the jamming threshold, while DTSC are interested in determining the amount
of order and degree of jamming for a particular configuration. We also argue that soft-particle systems are as
“clean” as those using hard spheres for studying jammed packings and point out the benefits of using soft
potentials.
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I. OVERVIEW: WHAT IS THE DIFFERENCE
BETWEEN THE TWO APPROACHES?

The meaning of random close packing is fraught with
ambiguities. A given amorphous packing can be made
slightly more dense by introducing small amounts of crystal-
linity; thus, the concepts of “randomness” and “close-
packing” would appear to be at odds with one another.

Torquato and co-workers[1] have pioneered a reexamina-
tion of random close packing(RCP) in terms of the notion of
a “maximally random jammed”(MRJ) state, with specific
definitions of “maximally random” and “jammed.” The point
of view espoused by Torquatoet al. [1] and by Donev,
Torquato, Stillinger, and Connelly[2] (DTSC) is fundamen-
tally different from the one we have adopted[3,4]. They seek
to identify, for a specific, finite configuration of hard spheres,
the degree to which that configuration can be considered
maximally random and jammed. They introduce three differ-
ent categories of jammed states and employ a series of order
parameters to measure the magnitude of different possible
forms of order. A given configuration is maximally random if
all of these order parameters are minimized with respect to
variations of the particle positions and lattice vectors of the
periodic cell. Thus, their emphasis is on finding the amount
of order and degree of jamming in any given configuration.

By contrast, our point of view does not seek to identify
the degree of order of any specific configuration. We are
exclusively interested in defining an ensemble of states that

are at the threshold of jamming. The results we have quoted
were obtained by extrapolation to the thermodynamic limit
not for infinitely hard spheres, but for soft particles that can
overlap. In our studies, we have considered a configuration
to be jammed if both the bulk and shear moduli are nonzero.
One remarkable finding was that both of these moduli have
their thresholds at the same packing density for all configu-
rations that we studied. In addition, we examined the spec-
trum of vibrational modes and found that above the jamming
threshold, all modes have nonzero frequency[5]. In our case,
the “maximally random” density is defined in terms of an
ensemble of configurations constructed as follows. Because
we use soft particles, we can initially placeN particles of
volumev at random within a box of sizeLd, whereL is the
box length andd is the dimensionality of space.(This corre-
sponds to infinite temperature and cannot be done with hard
spheres, which are never allowed to overlap.) Using a con-
jugate gradient or steepest descent algorithm, we relax the
initial configuration at fixed packing fractionf;Nv /Ld to
its nearest energy minimum; this defines the final state. This
relaxation depends on the interparticle potential and not on
any particle dynamics. It is therefore a property of the poten-
tial energy landscape. For a given number of particles,N, we
define the “maximally random jammedpacking fraction” to
be where the highest number of initial states have final states
at the jamming threshold. As we take the thermodynamic
limit N→`, we find that the width of the distribution of
jamming thresholds approaches zero; this indicates that vir-
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tually all of the configurations,which were sampled ran-
domly, jam at the same packing fraction. The value of this
packing fraction corresponds to the number commonly asso-
ciated with random close packing. We verified that this dis-
tribution of jamming thresholds does not depend on the po-
tentials we chose. Thus, while any given configuration can
be jammed or not jammed, the “maximally random” density
can be defined only by considering an ensemble of configu-
rations.

The two approaches, that of DTSC and our own, are simi-
lar in that they reinterpret “random close packing” in terms
of the “maximally random jammed” terminology[1]. We
will argue that the two approaches are equally valid. In Sec.
II, we respond to specific comments of DTSC. However, as
we discuss in Sec. III, the question is not which of these
approaches is more valid, but which is more useful.

II. RESPONSE TO SPECIFIC COMMENTS

A. What is “jammed”?

DTSC argue that we do not distinguish between the three
different levels of jamming defined in Ref.[6]—namely “lo-
cal,” “collective,” and “strict” jamming. It is indeed true that
we are not interested in “local” jamming, the least restrictive
of their definitions, in which groups of particles are free to
move. Instead, we are interested in systems where the bulk
and shear moduli are nonzero. By also ensuring that all the
vibrational modes have positive frequency(in other words,
that the dynamical matrix is positive definite so that configu-
rations that are only locally jammed are excluded), we not
only guarantee that the moduli are nonzero but also that the
system is isostatic at the jamming threshold. In an isostatic
system, the elastic properties are independent of the interpar-
ticle potential and thus dependent only on the geometry of
the configuration. Thus, the soft-particle system is as “clean”
as hard-sphere systems for studying the purely geometrical
properties of the physical pointJ.

DTSC demonstrate in their Comment that our definition
of “jamming” is closely related to their definition of “collec-
tive jamming.” As we have said in the Overview, we are
interested in the thermodynamic limit, when the number of
particles in our system approaches infinity. In such a limit,
boundary conditions no longer affect whether or not a system
is jammed. Thus, the distinction between their definitions of
“collective” and “strict” jamming disappears.

B. What is “random”?

In our framework, we have concentrated on creating a
completely random set of configurations for the initial state.
In our view, this is where “randomness” enters the problem.
We thus find the fraction of all phase space that is funneled
down (upon relaxation) into jammed configurations(i.e., the
fraction of phase space that has inherent structures that are
jammed). This sampling can easily be done with soft par-
ticles, but is impossible with hard spheres. For our systems,
this provides a consistent and well-defined ensemble with
which to work.

We agree with DTSC that we would also like to know the
distribution of all possible final states at zero energy that are
at the jamming threshold. If that knowledge were available,
then it would be possible to define “maximally random
jammed” with reference only to the final states. Unfortu-
nately, an algorithm to find such a distribution is unavailable.
Such an approach would be complementary to ours but
would not supplant it.

We note that all of ourfinal states at zero energy(i.e.,
states at or below the jamming threshold) are allowed hard-
sphere states. Presumably this is why DTSC are particularly
interested in the randomness of final configurations as op-
posed to initial ones. We can take the limit of using harder
and harder potentials to see if any of our initial-state distri-
butions change on approaching the hard-sphere limit. We
usedVsrd=ea−1s1−r /sda for r ,s, Vsrd=0 for r ùs, where
s is the particle diameter[7]. We find that the distributions
are indistinguishable for three different values ofa—namely,
5/2, 2, and 3/2. It is for this reason that we believe that our
results are relevant to studies of hard-sphere systems. Of
course, since our data are numerical and because there are
different ways of taking the hard-sphere limit, including
qualitatively different kinds of potentials, one can always
worry that the results might change as one approaches the
hard-sphere limit more closely.

In order to define the “maximally random jammed” den-
sity, we focus only on the distributions of configurations.
From our point of view, randomness does not describe a
particular configuration, but rather the ensemble of initial
states. Contrary to the assertion of DTSC, we are not propos-
ing a unique definition of order for the ensemble. Following
their example of a jammed but diluted fcc lattice packing,
this would be an allowed buthighly improbable state in our
distribution.

The example of a two-dimensional monodisperse disk
packing is more problematic[8]. It is unclear for such a
situation whether the phrases “maximally random jammed”
or “random close packed” are appropriate. Indeed if oneonly
had such a system one would never have come up with the
idea of random close packing. However, our definition in
terms of the ensemble would still yield a well-defined MRJ
density. The identification of various types of order in a
given packing is a deep and interesting question. However, it
is unclear whether one wants to conflate that issue with a
definition of an RCP or MRJ density. It depends on what one
wants to learn from the definition.

C. Universal algorithms

Contrary to the assertion of DTSC, we are not claiming to
explore the space of all jammed configurations in an unbi-
ased manner. Rather, we are exploring the space of all initial
states(at infinite temperature,T=`) in an unbiased manner.
DTSC see no difference between starting atT=` or any
other temperature; the advantage of starting atT=` is that
one can at least sample initial states completely randomly.

We are glad that DTSC have pointed out something that
may have been confusing in our paper. Because we have
used two different protocols to determine different types of
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results in our paper, they believe that we have mixed them up
in determining the distribution of jamming thresholds,Pjsfd.
This is not so. In determiningPjsfd (Fig. 6 of Ref.[3]) we
used the first protocol where we never varied the volume of
our system during the relaxation process. We have said this
explicitly in Sec. II C of our paper. To find thedistributionof
jamming thresholds, it is not necessary to determine the
value of fc for any givenconfiguration. Instead we only
need to know the fraction of states,f jsfd, that are jammed at
any value off. Pjsfd is then the derivative off jsfd with
respect tof. In order to findf jsfd we need only determine if
a state, produced by relaxation at afixedpacking fraction, is
jammed or unjammed. This is, as we said earlier, easy to do
since it only involves calculating whether the final configu-
ration has a positive-definite pressure, shear modulus, or dy-
namical matrix. This knowledge, in and of itself, is sufficient
to determine whether the state is jammed. Whether a con-
figuration is jammed or not does not require knowledge of
the precise value offc for that state. We should point out that
we could have obtained our results for the coincidence of the
pressure and the shear modulus approaching zero at the same
value off without ever using a compression or decompres-
sion run (the second protocol) but simply by plotting para-
metrically the pressure versus shear modulus for all states
obtained by relaxation at fixed packing fraction(the first pro-
tocol).

DTSC objected that obtaining the distribution of jamming
thresholds by looking at the fraction of jammed states is
unphysical for hard spheres. Note that states that are at or
below the jamming threshold are allowed hard-sphere pack-
ings. The fraction of such unjammed configurationsfusfd,
relevant to hard-sphere packings, is simply 1−f jsfd. Thus,

the same distribution of jamming thresholds could have been
obtained just as easily from the fraction of unjammed, hard-
sphere, states.

III. WHY OUR APPROACH IS USEFUL

The question of which approach is more useful depends
on what one wants to investigate. Perhaps the most important
advantage of studying soft particles is that we can study
properties of packings both above and below RCP or MRJ
density. This allows a more complete picture of the proper-
ties of pointJ. For example, the divergence of the pair cor-
relation functiongsrd nearr =s, gsrd,sr −sd−1/2 [3,4,9] was
completely missed by studies of hard spheres, but was un-
covered by using softer potentials. We have also found that
the properties of a jammed configuration depend solely on
f−fc—that is, the distance from the jamming threshold
(these studies were the only ones in which we allowed the
density to vary, using the second procedure described by
DTSC). Because we have shown that, at threshold, our states
are isostatic, the mechanical properties of our system atfc
(which approaches the RCP density in the infinite-system
size limit) do not depend on the potential chosen but depend
only on the geometry of the configuration. Thus, the soft-
particle system is as “clean” as hard-sphere systems for
studying the purely geometrical properties of pointJ.
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